Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Intern Emerg Med ; 17(3): 805-814, 2022 04.
Article in English | MEDLINE | ID: covidwho-1527503

ABSTRACT

There are only a few models developed for risk-stratifying COVID-19 patients with suspected pneumonia in the emergency department (ED). We aimed to develop and validate a model, the COVID-19 ED pneumonia mortality index (CoV-ED-PMI), for predicting mortality in this population. We retrospectively included adult COVID-19 patients who visited EDs of five study hospitals in Texas and who were diagnosed with suspected pneumonia between March and November 2020. The primary outcome was 1-month mortality after the index ED visit. In the derivation cohort, multivariable logistic regression was used to develop the CoV-ED-PMI model. In the chronologically split validation cohort, the discriminative performance of the CoV-ED-PMI was assessed by the area under the receiver operating characteristic curve (AUC) and compared with other existing models. A total of 1678 adult ED records were included for analysis. Of them, 180 patients sustained 1-month mortality. There were 1174 and 504 patients in the derivation and validation cohorts, respectively. Age, body mass index, chronic kidney disease, congestive heart failure, hepatitis, history of transplant, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, and national early warning score were included in the CoV-ED-PMI. The model was validated with good discriminative performance (AUC: 0.83, 95% confidence interval [CI]: 0.79-0.87), which was significantly better than the CURB-65 (AUC: 0.74, 95% CI: 0.69-0.79, p-value: < 0.001). The CoV-ED-PMI had a good predictive performance for 1-month mortality in COVID-19 patients with suspected pneumonia presenting at ED. This free tool is accessible online, and could be useful for clinical decision-making in the ED.


Subject(s)
COVID-19 , Pneumonia , Adult , Emergency Service, Hospital , Humans , Pneumonia/diagnosis , ROC Curve , Retrospective Studies , SARS-CoV-2
2.
West J Emerg Med ; 22(5): 1051-1059, 2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1405512

ABSTRACT

INTRODUCTION: Diverse coronavirus disease 2019 (COVID-19) mortalities have been reported but focused on identifying susceptible patients at risk of more severe disease or death. This study aims to investigate the mortality variations of COVID-19 from different hospital settings during different pandemic phases. METHODS: We retrospectively included adult (≥18 years) patients who visited emergency departments (ED) of five hospitals in the state of Texas and who were diagnosed with COVID-19 between March-November 2020. The included hospitals were dichotomized into urban and suburban based on their geographic location. The primary outcome was mortality that occurred either during hospital admission or within 30 days after the index ED visit. We used multivariable logistic regression to investigate the associations between independent variables and outcome. Generalized additive models were employed to explore the mortality variation during different pandemic phases. RESULTS: A total of 1,788 adult patients who tested positive for COVID-19 were included in the study. The median patient age was 54.6 years, and 897 (50%) patients were male. Urban hospitals saw approximately 59.5% of the total patients. A total of 197 patients died after the index ED visit. The analysis indicated visits to the urban hospitals (odds ratio [OR] 2.14, 95% confidence interval [CI], 1.41, 3.23), from March to April (OR 2.04, 95% CI, 1.08, 3.86), and from August to November (OR 2.15, 95% CI, 1.37, 3.38) were positively associated with mortality. CONCLUSION: Visits to the urban hospitals were associated with a higher risk of mortality in patients with COVID-19 when compared to visits to the suburban hospitals. The mortality risk rebounded and showed significant difference between urban and suburban hospitals since August 2020. Optimal allocation of medical resources may be necessary to bridge this gap in the foreseeable future.


Subject(s)
COVID-19/mortality , Emergency Service, Hospital/statistics & numerical data , Hospital Mortality , Hospitals, Urban/statistics & numerical data , Pandemics , Suburban Health Services/statistics & numerical data , Adult , Aged , Humans , Male , Medicare , Middle Aged , Residence Characteristics , Retrospective Studies , SARS-CoV-2 , United States/epidemiology
3.
J Formos Med Assoc ; 120(9): 1777-1781, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1174364

ABSTRACT

Since December 2019, the outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly around the world. The severity of COVID-19 ranges from asymptomatic carriers to severe acute respiratory distress syndrome (ARDS). Accumulating evidence has shown that COVID-19 may be associated with multiple organ complications including cardiac injury, viral myositis and neurological deficits. Numerous laboratory biomarkers including lymphocytes, platelets, lactate dehydrogenase and creatine kinase (CK) have been associated with the prognostic outcomes of patients with COVID-19. However, dynamic correlations between levels of biomarkers and clinical course have not been studied. Herein, we report a 74-year-old female patient with severe COVID-19 which progressed to ARDS requiring intubation and mechanical ventilation. The laboratory findings showed lymphopenia, hypogammaglobulinemia, and elevated inflammatory biomarkers and CK. She received intensive therapy with hydroxychloroquine, lopinavir/ritonavir, and azithromycin with limited effects. Immunomodulatory treatments with high dose intravenous immunoglobulin and baricitinib were prescribed with satisfactory biochemical, radiographic and clinical recovery. We found an interesting correlation between serum CK elevation and inflammatory biomarkers, which reflected clinical improvement. This case demonstrates that inflammatory biomarkers, cytokines, and CK level correlated with disease severity and treatment response, and combined use of intravenous immunoglobulin and baricitinib is a potential treatment in patients with severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Rhabdomyolysis , Aged , Azetidines , Female , Humans , Immunoglobulins, Intravenous , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides
5.
Scand J Trauma Resusc Emerg Med ; 28(1): 118, 2020 Dec 17.
Article in English | MEDLINE | ID: covidwho-979473

ABSTRACT

BACKGROUND: The current COVID-19 pandemic is highlighting gaps around the world in the design and workflow of Emergency Departments (ED). These gaps have an impact on both patient care and staff safety and represent a risk to public health. There is a need for a conceptual framework to guide ED design and workflow to address these challenges. Such a framework is important as the ED environment will always remain vulnerable to infectious diseases outbreaks in the future. AIMS: This paper aims to address issues and principles around ED design and workflow amidst the COVID-19 pandemic. We propose a conceptual framework and checklist for EDs to be prepared for future outbreaks as well. METHODS: A scoping literature review was conducted, of the experiences of EDs in managing outbreaks such as SARS, H1N1 and COVID-19. The combined experiences of the authors and the experiences from the literature were grouped under common themes to develop the conceptual framework. RESULTS: Four key principles were derived- (1) situational awareness, surveillance and perimeter defence, (2) ED staff protection, (3) surge capacity management and (4) ED recovery. The findings were integrated in a proposed conceptual framework to guide ED design in response to an infectious disease outbreak. There are various elements which need to be considered at ED input, throughput and output. These elements can be categorised into (1) system (workflow, protocols and communication), (2) staff (human resources), (3) space (infrastructure), and (4) supply (logistics) and are placed in a checklist for pragmatic use. CONCLUSION: The ED needs to be in a constant state of preparedness. A framework can be useful to guide ED design and workflow to achieve this. As all ED systems are different with varying capabilities, our framework may help EDs across the world prepare for infectious disease outbreaks.


Subject(s)
COVID-19/epidemiology , Emergency Service, Hospital/organization & administration , Pandemics/prevention & control , SARS-CoV-2 , Humans , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL